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LEAST SQUARES OVER THE COMPLEX FIELD 

1. Introduction 

Sets of complex linear (observational* equations in s £ r unknowns 

•rise in ballistics. For the equivalent real equations the least square 

solution is frequently accomplished by the square root method.  This mathod 

has several characteristics which recommend it for use with high speed 

computing machinery: 

(1) In fixed decimal machines the scaling problem tends1 to be 

minimized because the squarn root operation reduces the spread of data. 

(2) The algorithms involved are particularly simple and independent 

of the number of unknowns.  (This implies that to extend a set of instruc- 

tions for solving an nth order system to a larger system requires only 

adding instructions.) 

(3) Storage allotment is systematic and simple. 

(4) The amount of storage required (at least with certain machines) 

appears to be minimal. 

(5) A simple simultaneous check of th* formation and solution of 

the normal equations and calculation of res5.duals is possible (cf. theorem 5) 
(2) 

(6) Weights   of the unknowns are readily calculated from inter- 

mediate results. 

It X»  not appreciated in all computing circles that th« square root 

technique admits of a trivial extension to the complex domain maintaining 

the characteristics mentioned above. Cnce this is appreciated it is 

natural to ask whether there is "any difference" in solving the complex 

normal equations by computing with complex numbers or by computing with 

* The program constructed at NOL for use on a Card Progranmed 
Calculator using a double operation general purpose board requires no 
temporary storage. The storage requirement for solving a system of n 
equations with n unknowns is one more than the number of (in general 
distinct) elements in the (augmented) matrix, i.e., the storage require- 
ment is ^(n*l)(n*2). 

(2) v 'See Whittaker and Robinson, Calculus of Observations, Third 
Edition, p. 239. 
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real numbers.  It turns out that the number of real operations (of each 

type) required to solve the normal equations by computing within the com- 

plex domain is less than or equal to half the nunber of real operations 

required to solve the equations by computing within the real domain. 

2.  The problem 

Let M --> N • IP be a complex r x s matrix, »<r. Let w • u • iv 

be a complex r x 1 matrix (or column vector). The problem, then, is to 

find a complex s x 1 matrix, z - x • iy, which, in the least square 

sense, is the best possible solution to the set of equations 

(1) M* * w. 

("*"  denotes "equals approximately" and is used to emphasize that there 

exista,  in general,  no z such that Hz « w precisely.) 

?rora (1) ve obtain 

(M • iP)(x • iy)    *    u • iv 

(Nx - Py)  • i(Px * Ny)    *    u * iv 

so that 

(2) Nx - Fy    A    u        or        (N      -r) !      j     *    u 

and 

/x\ 
(3) Px • Ny    *    v        or        (P     K)(      I.    *   v. 

Equations (2)  and (3) taken tosathsr yield 

/M  -P\/*
N

\   ("\ 

The two method*v ' of solving (1) with which we are familiar both seek 

(3) x Cf. references 4 and 6. 
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the solution of (/+). 

3. The mapping 

We note that (2)  and (3) are respectively equivalent to 

(P N,r).. 

/-y\ 
(N  -P) I    i A -v 

and th«r» l-.tter taken together are equivalent to 

VP        N A   X/ \   U/ 

(Z*)  snd (5)  &re equivalent and each is equivalent to 

/N     =P^ 
(6) 

\ P        N/\7       x / VT       U 'Ax      xj V 

Let f denote the mapping 

f(M) - ( 
i, _ 
vp 

-P\ 

) 

Then (6) may be written 

f(M)< •f(«) * f(w). 

for any complex matrix M. 

4. Some theorems 

Theorem i. For any z « x • iy the sum of the squares of the moduli 

ef the residuals of (I) equals the sura of the squares of the residuals of 

(4). 

Proof. The sum of the squares of the residuals of (1) may be written 
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An    m*4-v*^-v    +• •mine logy »« 

(7) '(Ma - w)(Mz - w) 

where » A"  denotes the transpose of the matrix A and A denotes the matrix 

obtained from A by replacing each element by its conjugate. (For    I we 

shall often write *A.J  Replacing M by N * iP,  z by x • iy and w by u • iv 

wa obtain 

Mz - w   -    (Nx - Py - u) • i(Px • Ny - v) 

so that (7) becomes 

(8) t(Nx - Py - u)(Nx - Py - u)  + t(Px + Ny - v)(Px • Ny - v). 

The eum of the squares of the residuals of (4) is 

t|/N      -P\   (x 

| \P       N/  \y. 

u 

P      N/Vy/ \W 

•. / 
/ Nx - ty - u\   /Nx - Py - u^ 

V Px • Ny - v/   \ Px • Ny - v/ 

which equals (8) and hence (7)= 

Lemma 1.     If A is a hermitian positive defiriite matrix, then there 

exists at most one triangular matrix S with real positive diagonal elements 

such that ^«S    -A.     (S - (a. .)  is triangular shall mean that 5 io a 

square matrix with th* property that i > J implies s,. • 0.) 

Proof. Assuming S exists we have ]>V , a^aRI " z^^t 1 ^ i»J • n, 

where n ie the order of A. Since i > j implies s,. - 0, for i £ j we have 

a..    -   5T,_.  »ki»y4* which yields the formulas: 

if  .,   .. t^.V.t**' 
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911 ^       -ij - 7* >       K^n, 

i-1      . 
(9) B..    - (a,,- 2 "nOAn*    K.KjSn, •U " ^*U " & "ki'kjVii' 

Theoraa 2.    The following firs conditions on & heraitian n x n matrix 

A are equivalent*    [(a)  is taken as the definition of a matrix being 

positive definite.] 

(a) xAx   >   0 for all non-aero complex n x 1 matrices x. 

(b) A    •    T$»B for some complex r x • matrix B and  |A| / 0. 

(•)    The principal minors of A are all positive,  i.e., the determinants 

of all matrices obtained from A by deleting the same rows and columns are 

all positive,    (|A|  is a prinoipal minor.) 

(d) A    -      3«S for a coaplex triangular matrix S » (»i1) with 

positive diagonal elements. 

(e) Let A.,  1 $ i < n, denote the matrix obtained from A by delating 

rows and columns 1+1, 1 • 2,  •••, n.     |A.| > 0 for 1 S i < n ond  |A| > 0. 

Proof,     (a) implies (e).    Let X,, X...  •••, k   be the not necessarily 

distinct roots (eigenvalues) of g(k)    -    IA - XIJ, so that g(X.)    - 

"Hi-1 ^i ' ^*    Th*n **°'    "    lA'    -   ^i-1 Xi*    For *ach \ th*r* «*•«*•" 
a noa-sero n-tuple (column vector,  eigenvector) x,  euch that Ax.    -    S*!' 

since there exists a non-trivial (non-sere) solution to the equations 

^For any hemitian A,    *xAx   -    txZx   -   t(txJS)    -    ^xHx   -    *xAx 

so that txAx is rsal. 
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(A- >Ml)x - 0. Using the hypothesis:  x„ *Ax. « x.^k.x.    -' ' 
1 i A X      X   X 

K± *±x± > 0JI BO th*fc X" '* °* H#nc# i*S • TTi"i *« > 0. 
Let A(i) denote the matrix obtained from A by deleting the ith row 

and column end x(i) the column Matrix obtained from th« n x 1 matrix x 

by deleting the ith element (row). If the ith *«w of x 1*  .ro, then 

txAx - tiTi7 A(i) x(i), 

so that A(i) is positive definite.    From %he preceding paragraph, 

JA(i)j    >   0.    It follows that all principal minore are positive. 

(0)  implies (e).    Obvious. 

(e) Implies (d).    jaj    -    a^   >   0, » that there exists sn   - 

fa^ and e^    -    *i^*u *    If »22 "* *12*12   >   °* tlwn ** °*" ]find 

s22 > 0 and aj,, e0, satisfying (?) above.    If, further, a„ - *3j*lt * 

*^»~>   >   0, then we can find s,» > 0, s^,, e^,, •_    satisfying (f) 

above.    Let r denote th« iwui j such that 

(10) \)J " £ VAJ * ° 
(assuming there exists such a J, 1< Jjn).    Let »     £ 0 be sueh that 

2 &1- 

Denoting the triangular matrix (1,4), , , A . _ by S„ we have 

3 *S  -A 
r r   *r 

where 3    U1! except in the rih row end column stands -«      iavtead of s -r —    -    -r  »n. *•»• * w
rt

t 

\\\    "   if   «U' i-1    - 

|3rl    "    "if    *!!» r i-1   xx 
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so that 

|Arl     "    -if    \- 
i-1 

The left-hand member is positive by hypothesis, while the right-hand 

member is negative or zero. Thu3 the assumption of the existence of j, 

1 < J £ n, such that (10) holds is false, and the existence of S is 

established. 

(d) implies (b). Take B    - S.  |A| > 0 since |A| - TTJ!i »ii 

and a.. > Or 

(b) implies (a),  fcxAx - tx-t3B«x - ^B-Bx - ttfSL)Bx   > 0 

since (Bx)EU is a sum of squares. If, for some x,  (Bx)Bx - 0, then 

Ebc - 0. Hence B«Ebc - Ax - 0.  |A| /  0 and Ax - 0 imply x - 0 (this 

follows from Cramer's rule). 

Corollary. If A is hennitian positive definite, Llien there exists 

a unique triangular matrix *ith positive diagonal elements such that 

A - ^-S. 

Proof.     Immediate from lemma 1 and theorem 2. 

Lemma 2. If the sum (product) of two complex matrices >L, K. is 

defined, then the sura (product) of the two real matrices f(K,), f(*0 

is defined ,ind 

(a) fl.Kj^ • Mg)    -    f^)  * fdlg), 

(b) fi^-Mj)    -    f'^J-fOtj), 

(c) f(ivM) - af(M) for any real number a. 

Proof. That the sum and product of f(K>), f(K,) are defined is clear. 

Proofs cf (a) and (c) are obvisus. 
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(b)    Let J^    -    nx * iP1>    ^    "    N2 * iP2*    7hm 

/N     -PA/N2    -PA 
<(*1>"<«2>    -    ( X 2 2 

\Pi        V^P2        V 

\»a - PXP8     -(N^ • P^A 

•N1P2 * P1N2 N1N2 " P1P2 / 

-    f^M,). 

Remark.    An n x ft matrix A 1» called non-singular if A"    exists, 

A**1 eodsts if and only if  |A| / 0 since (1) if A-1 exist*, A'A*1    -    I, 

JAJ-lA"1!    -    1, so that  |A|  / 0, and (2) if |A| / 0, then Ab±.    -    6±^, 

1 5 i 5 n>  fixed j,  has a solution by Cramer's rule;     let J vary between 

1 and n,  then if B • (b. .),  AB - I. 

Lemma 3.     (a)    f(l )    ••    1    , where I    denotes the n x n identity 

matrix. 

(b) If M is a square matrix and M~    exists, then f(M)  is aqu»r=, 

[f(M)]"1 sxists, and f(M-1)    -    [f(M)]"1. 

(c) tC%    -    *f<M). 

(d) H   -    P • iQ is hermitian if and enly if P is symmetric and 

Q is skew-symmetric. 

(e) If K is hermitian positive definite, then f(H) is symmetric 

positive definite and if H - P • iQ then P is positive definite. 

Proof,    (a)  follows from the definition of f. 

(b).    If AM - I, then f(A)«f(M)    -    I using lemma 2(b) and lemma 3(a). 

Thus f(A)    -    (f(M))"1 if A - M_1. 

(c).    IfM    -    N • iP,    «M   •    *» - 1*?, 
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/N  -P\ 
f(M) - 

V P   N / 

f(*M) • U s> 
and the result follows. 

(d). Immediate from the definition of hermitian. 

(e).  By the corollary to theorem 2 there exists a triangular matrix 

3 such that *S*S « H. Applying f to both sides of this equality yields 

f(*S)-f(S) - f(H). 

E|y lemma 3(c), f(*S)    -    tf(S),  so that 

(A) ^(Sj-fCS) - f(K), 

and 

(B) ^(H)  - t[tf(S).f(S)]  - f(H). 

(B) shows that f(H) is symmetric. That |f(H)| / C^ iollows from 

lemma 3(b).  |f(H)| / 0 and (A) prove that f(H) is positive definite 

(over the complex numbers) by theorem 2, 

Alternatively, f(H) may be proved symmetric positive definite as 

follows. f(H) - (£ ~^j . From (d), f(H) is symmetric. Since H is 

positive definite, 

^Ka = -(-) > 0, 

. /.(.)  0 \    f \     V\    fx     -y\ 

^'Indeed, it may be shown that jf(H)j -  |H| . 
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where z • x • iy. It follows that 

(*x  V) «H) (   ] - a(z) > 0.(6) 

Let S - U • IV. Then 

f(H) - 
/ *u S*Vu -v\ 

It follows that P »  U«U. U is triangular and the elements along its 

main diagonal are the elements along the main diagonal of S. Thus 

|U|  » |S| fl    0. Therefore, P is positive definite. 

(7) 
Theorem 3. Assuming |*M«M| / 0,   che s which minimizes the sum 

of the squares of the moduli of the residuals of (l) is the solution 

to the equation 

(11) •M'M«z - *H«w. 

Proof, Since |*M«M! /    0, it follows that |f(*M»M)| / C from 

lemma 3(b).  By theorem 1, if ( x) is the least square solution to (4)> 

then z    • x • iy minimizes the sura of the squares of the moduli of the 

residuals of (l). The least square solution to (4) is the solution to 

the equation 

(12) tf(M)-f(M)(  )  * ^OOtj. 
\ y / N V' 

* 'This latter proof shows that f(H) is positive definite over the 
real numbers. It may readily be shown that in general if a symmetric 
matrix is positive definite over the real nuubers, it is positive definite 
over the complex numbers. 

*''If M is an r x s matrix, s £ r, of rank 8, it may be shown that 
1*M«M| i  0. 

10 
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Application of f to (11) yields 

(13) lf(M)-f(M)-f(z) - lt{lO'£M. 

The  first column of £(z)  is then the solution to (12)  and the theorem 

is proved. 

Theorem 4.    Let Ax - g represent a set of n linear equations in n 

unknowns.    Assume A is an n x n herraitian positive definite matrix and 

g is an n x 1 complex matrix.     Then 
/A      -g\ 

(a) there exists a such that if B •   .     ), then |8j «  A|; 
\- 1      a/ 

(b) there  exist an n x n  triangular matrix S arid an n x 1 matrix k 

such that 

/A      -g\ /  *S      0\/S      -k\ 

V-*I   a)  '   KSz   iy"Vo     iJ; 

(c) there exist an n x n triangular matrix T and an n x 1 matrix y 

such that 

(d) Ay - g. 

Proof. Expand |B| by elements of the last column, giving |s| 

c • |A|a where c is independent of a, i.e., |B| is a linear function of a0 

Since |A| / 0, a can be determined so that |B| • |A|. 

Since |B|  -  |A| > Oj and A is positive definite, it follows from 

theorem 2, condition (e) that B is positive definite.  By the corollary 

to theorem 2, there exists a unique (n+1) x (n+1) triangular matrix which 

11 
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decomposes S (in ths sense of the corollary). Since |B|/|A| equals the 

square of the element in the (n+l)th row and column, this element is 1. 

Thus B decomposes as shown in (b). 

Let 

T y \ /   S        -kA f  Z °\ 
' )• 

w 1 / \ 0 1/ \ 0 1/ 

Assume inductively that T is triangular.    Then wS • 0*1    -    0.    Since 

js|  j* 0,  w - 0,  so that the inverse of a triangular matrix is triangular, 

(c)  follows. 

From (c),  T(-k) * yl    -    0 and TS - I;  so that 

y   »    Tk 

Sy    -    STk    -   k 

t5Sy    -    *Sk. 

From (b), A    -    ^§S and -g   -    ^(-k) + Ol,  so that (d)  follows. 

Theorem 5.    Let e    -    Mz - w where M, w are as in (1)  and z is the 

solution to (11).    Let A    •    *M«M be non-singular.    Let g    -    *.M*w.    Let 

A    -   *S«S,  the unique triangular decomposition given by the corollary to 

theorem 2.    Let k    -    *S      g.    Then 

(14) •e'e    -    *w«w - *k«k. 

Proof. *e«e - *z*MMz ~ *wM«z - *z**Mw • *ww « *z**SSz - *gz - 

*zg • *ww - *zg - *gz - *zg • *ww • *ww - *gz. Now Sz • k, so that 

%   - S~ k, while *Sk - g, so that «g - *kS. (14) follows. 

5. Weights 

Let A bo a non-singular 3X8 matrix.    If (\)> k • l>2,,,*Js,  is 

the solution of the real matrix equation 

12 
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(15) Ax - g, 

(8) 
then che weightv ' of the solution x , written w, (x) or more properly 

*k(A); is given by 

(i6) -i    . hd . .,, 

where JA. j is the minor of a., and where (s. .) - E - A . 
K" jut ' ij 

If (a. ) " (x. • iyk)» k " l>2,-««,8, is the solution of the complex 

matrix equation 

(17) As    <•    g 

and 

(18) A    -    B • Ci, 

then we define 

(19) i         i       M 
VA>           <*k<5'            |A| 

g - m • ni, 

"    *kk 

and we define wk(x)    -    w^fU))  and *k(y)    -    w^CfU)). 

Theorem 6.    If A is hermitian,  then *.(*)    "    w^M    "    ^(y)* 

Proof,     Let A~      «    M + Ni.     Sine* A is hermitian, A~    is also 

(9) hermitian        so that K is skew-symmetric.    Thus 

<20) w^    "    \k * W    "    "kk* 

It fallows from lemma 3('s) that 

(6) v 'Cf. Whittaker and Robinson, Calculus of Observations. 

^9'From AA"1 - I follows •A~1«*A - *(AA~1) - *I I. A - *A. 

so that *A~ «A - I, Hence *A~  • A~ and A~ is hermitian. 

13 
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\ =1    / 
~C\ / M 

\C   B/      VN 

so that 

1  _  1  _     ,  I 

6. Counting operations 

Theorem 7. Let a(r»)> m(n), d(n) represent the number of real additions 

(or subtractions),  multiplications, and divisions, respectively, required 

to find S such that *S»3 - A by means of algorithm (9) on page 5 where 

A is a real symmetric positive definite n x n matrix and S is a triangular 

matrix. Let a" (n), m~ (n), d~~(n) represent the number of additions 

(or subtractions), multiplications, and divisions, respectively, required 

to find T • S" by means of the formulas given below. Let *a(n), •--, 

**" (n), --•• have cerreepending meanings in the case that A is a not real 

hermitian positive definite matrix. Then 

(A) a(n) - m(n) - m_1(n) - \ n(n2 - 1) 

d(n) - \ n(n - 1) 

e^n) - \ n(n - l)(n - 2) 

d-1(n) - \ n(n • 1), 

(B) *a(n) - «m(n) - "a^Cn) - \ n(n - l)(2n - 1) 

*a~X(n) - j n(n - l)(n - 2) 

•d(n) - n(n - 1) 

«d"1(n) - n2. 

1* 
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Proof, We establish the formulas for m(n) and *ra(n) only. The 

others may be established in a similar manner. We give first the formulas 

for computing T - (*ii)« 

(21)      t,, - -i- ;      t«. - " 5gi tlk3k.1  ^ i < .,, 

The formula for m(n) is correct for n • 1. Assume it correct for n. 

Since the number of multiplications required to compute s.  ., 0 < i £ 

1 2 
n*l,  ia i - 1,    m(n • 1)    -   r n(n -1) • (0+l*2**"*n)    - 

12 1 1 T n(n -1)  • -? n(n*l)    -    -r n(n*l)(n+2), which establishes the formula. 

Multiplication of two (in general unrelated and not real)  complex 

numbere requires four real multiplications.    In case of multiplication of 

a complex number by its conjugate, ths number of real multiplications 

required is two.     The number of multiplications required to calculate 

the diagonal elements (in the real case) is -r n(n-l).     Hence *m(n)    - 

4[m(n) - n n(n-l)]   • 2[-z n(n-l)],  which yields the desirsd result. 

Corollary.  If A is hermitian positive definite,  th«->  ^.he number of 

operations required to compute S such that *S»S    ~    A i? 1*93 than half 

that required to compute S sueh that    3«S    -    f(A). 

Proof.    Let 

(a) - m(2n) • m_1(2n) - I n(2n-l)(2n+i) 

(a)' - *m(n) •«• *af"L(n) - | n(2n-l)(n-l) 

(b) • a(2n) «• a" (2n) - r n(2n-l)(4n-i) 

(b)« - *a(n) • *a~1(n) - i n(n-i)(4n-5) 

(c) - d(2n) * d"1(2n) - 4n2 

(c)'     •=    *d(n)  • *d"x(n)    -    n(2n-l). 

15 
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It is readily seen that 

(•)' < | (•) 

(b)' < | (b) 

(c)« < | (c). 

It is also clear that the number of square roots to be taken is 2n 

in the real case and n in the complex case. 

7. Miscellaneous remarks 

1. If \  is a real eigenvalue of A with eigenvector z • x • iy / 

0, then X. is an eigenvalue of f(A) with linearly independent eigenvectors 

£) , ( y] since Az • \a implies f(A)*f(z) - A.f(z), It may be neted 

that x • iy and -y • ix are linearly dependent (over the complex numbers), 

2. A computing technique to solve Az » g with hermitian positive 

definite A may be b&eed upon the following equations 

*S«Sa - g 

Sz « k  where k • *S~" g, 

which yields the formulas for z,: 

n 

E 8ik\ " ki- 

,hBB 3nnan    •    kn'    8n-l,n-lan-i * Vlzn    "    kn-l>  8tC* 

The formulas for computing S and k are given by (9) where the last 

column (from left to right)  of S plays the role of k. 

3. It should be noted in a computation based upon theorem 4, 

a need not be calculated, 

A variant of theorem 4,  frequently convenient,  is obtained, by 

16 



V 

NAVORD Report 3797 

replacing -g by g, - g by g, -k by k, - K by k and replacing 1 by -1. 

y remains unchanged and Ay • g. 

4. A computation based upon remark 3 rather than remark 2 is more 

economical when the weights of the unknowns are desired since the weights 

are the diagonal elements of k"x  (excluding -1), S~ is calculated, and 

A   » S    *S~  . If the weights are not desired, a computation based 

on remark 2 is more economical. 

5. It is frequently desirable to "scale" the r x s matrix of 

observational equations 

(A) ME * w. 

This is accomplished by considering instead of (A) 

(D) MD2 * cw, 

where D is an s x s diagonal matrix and c is a real number. The normal 

equations corresponding to (B) are B«*M*M«D2 - D«*M«cw » cD«*Mw or 

(C) DAD2 - cDg 

-~ers A    -    *M«M and g    -    *M*w.     The solution to (C)  is 

Z    •    .0    A    u    'cug    •    cD    «A    g 

so tnai. 

ur 

z    -    eD**1* 

c'Va. 

6. If we define ^ © Hg - *M1«M2, then A - S 0 S, whence tha 

name "square root method". Gf. references 1 and 2. 

17 
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7. Concerning theorem 4, a convenient order of computation is 

81P s12'  n22'  "13' 82"" S33P *"** A^9r »u i» computed, it displaces 

a^. in memory (the real part, of 9.. displacing the real part of a1 . and 

the imaginary part of s. . displacing the imaginary part of *,.,)• Coiapar- 

ing  (?)» °ne notes that each qxwitity required to compute s = . is in 

storage at the tim» that s. . is being computed. 

Similarly, a convenient order of computation for t. . is t.., t.?> 

^22* ^13' ^23' ^33* ****  After t. , is computed, it displaces s4 . in 

memory. Comparing (21), or.= r.ctes that each quantity required to compute 

t. . is in storage at the time that t, . is being computed. 

8. If H is hermitian positive definita and H •» *3»S, then 

f(H) -  f(S)«f(S), but f(3) is not triangular. The economy of working 

within the complex field can be attained working in the real field if one 

seeks a decomposition for f(H) of the above form rather than a trian£-. ;,<*r 

decomposition. The triangular decomposition does not make use of the 

special form of f(H). 

9. If A is a symmetric matrix and xAx • 0 for all real x, then 

A - 0. For, taking x to be the column matrix with 1 in the ith position 

and zero elsewhere yields xAx - a,, - 0. Taking x to be the column 

matrix with 1 iii VUG  ith and jth positions and isro »lo»«tisr« yiexds 

"xAx - a,. • 2a. . • a.. • 2a. . • 0 which justifies the assertion^ 

If H is » hermitian matrix and *BHI * 0 for complex n x 1 matrices 

z, then x f(H) x - 0 for real 2n x 1 matrices x. It follows that 

f(H) - 0. Hsnce, H - 0. 

10. Any complex matrix A may be written as 

"l * iH2 

18 
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where H, - - (A •»• *A) and H„ - :=• (A - *A) are hermitian. If #zAa 

is real for all z, then *zH,z + i*zH2a is real. By  footnote 4, *zrLk; 

and *zH_z ar« real. Hence *zH.z » 0 for all z and H - CL Thus, if 

*»Az is real for all z, then A is hermitian. A fortiori, if A is positive 

definite over the complex field, it is hermitian,. In particular if a 

real matrix is positive definite over the complex numbers, then the matrix 

is symmetric. 

There exist, however, non-symmetric real matrices positive definite 

over the real numbers. For example, (    i ) * ( i  n)  "  (n  i ) 

is positive definite over the real numbers since (2      l\ is oositive 
\1  1/ 

definite and for all skew-symmetric matrices Q,      xQx    »    0 for all x. 

If a real non-symmetric matrix is positive definite over the real 

numbers,  it is not positive definite over the complex nuabers- 

11. If U is a unitary matrix,  i.e., *U«U    -    I,  then f(U)  is 

orthogonal sir.ee f(*U-U)    -    ^(UWCU)    -    I. 

12. It is well known thatVAUy  if H is a hermitian matrix,  tnen there 

exists  a unitary matrix U such that *U«H*U is diagonal.    Application of f 

yields that    X(U)»f(H)«f(U)  is diagonal with f(U)  orthogonal.    Thus the 

eigenvalues of f(H)  are precisely the eigenvalues of H with doubled 

multiplicity.     In particular,  it  follows that   jf(H)|    -    |HJ   . 

*    'CX.  Ilalffios,  Finite Dimensional Vector Spaces,  p.  129, 

19 
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